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Summary For testing lack of correlation against spatial autoregressive alterna-

tives, Lagrange multiplier tests enjoy their usual computational advantages, but the

(χ2) first-order asymptotic approximation to critical values can be poor in small sam-

ples. We develop refined tests for lack of spatial error correlation in regressions, based

on Edgeworth expansion. In Monte Carlo simulations these tests, and bootstrap ones,

generally significantly outperform χ2− based tests.
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1 INTRODUCTION

The spatial autoregressive (SAR) model is a parsimonious tool for describing

spatial correlation, conveniently depending only on economic distances rather

than geographical locations, which may be unknown or irrelevant. It thus pro-

vides a convenient, widely-usable class of alternatives in testing the null hypoth-

esis of spatial uncorrelatedness which, if true, considerably simplifies statistical
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inference. A linear regression with SAR disturbances is given by

y = Xβ + u, u = λWu+ ε, (1.1)

where y =(yi) is a n× 1 vector of observations, X =(xij) is an n× k matrix of

non-stochastic regressors, β is a k× 1 vector of unknown parameters, ε = (εi) is

a n × 1 vector of unobservable, mutually independent, random variables, with

zero mean and unknown variance σ2, λ is an unknown scalar, and W = (wij)

is a given n × n “weight” matrix, such that wii= 0, 1 ≤ i ≤ n, and typically

satisfying normalization restrictions (which aid identification of λ). A special

case of (1.1) is “pure” SAR, or SAR for y, when β = 0 a priori,

y = λWy + ε, (1.2)

and SAR for y with constant mean, when k = 1 and X = l, the n× 1 vector of

1’s, i.e.

y − βl = λW (y − βl) + ε, (1.3)

When W is row normalized such that Wl = l, (1.3) becomes the intercept model

y = αl + λWy + ε, (1.4)

where α = (1− λ)β.

When λ 6= 0, (1.1) implies the yi are spatially correlated, but under the null

hypothesis

H0 : λ = 0 (1.5)

they are mutually independent. Various tests of (1.5) have been discussed in the

literature (see e.g. Moran (1950), Cliff and Ord (1972), Burridge (1980), Kele-

jian and Robinson (1992), Pinkse (2004) ). For example Wald and likelihood-

ratio (LR) tests have been developed assuming that the εi are normally dis-

tributed (e.g. Ord (1975)). However these involve the maximum likelihood

(ML) estimate of λ, β and σ2, which is not defined in closed form, and the likeli-

hood need not necessarily be unimodal. This drawback is avoided by Lagrange

multiplier (LM) tests, following Moran (1950), which classically share the opti-

mal local efficiency properties of Wald and LR but involve closed form estimates

of β and σ2 under (1.5). Anselin (2001) surveyed LM testing in SAR models.

Under (1.5) and regularity conditions, LM, Wald and LR statistics against
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the two sided alternative

H1 : λ 6= 0, (1.6)

each have a null limiting χ2
1 distribution as n → ∞, and provide consistent

tests. Frequently, however, spatial economic data sets are not very large, and

the χ2 approximation may be inaccurate. This is of particular concern in the

SAR setting where convergence to the limit distribution can be slower than the

classical parametric rate (as found for the ML estimate in SAR models by Lee

(2004)). Table 1 reports simulated sizes of Wald, LR and LM tests of (1.5) for

SAR y, (1.2) with εi ∼ N (0, 1) and 1000 replications, and W follows the Case

(1991) specification

W = Ir ⊗Bm, Bm =
1

(m− 1)
(lml

′
m − Im), (1.7)

where Is denotes the s× s identity matrix and lm the m× 1 vector of ones, so

n = mr; in (1.7), r might represent the number of districts and m the number of

households per district, so households are neighbours if and only if they belong

to the same district, and neighbours are equally weighted. The four (m, r)

combinations in Table 1, corresponding to n = 40, 96, 198, 392, are designed to

reflect an asymptotic regime where convergence is slower than the parametric

rate, as discussed subsequently. The empirical sizes are to be compared with the

nominal 5%, so the χ2 approximation is not very good, with Wald and LR being

over-sized and LM under-sized, and Wald and LM exhibiting little improvement

with increasing n, and LR none. Thus, the issue of constructing tests that enjoy

good size properties in modest samples seems worth pursuing.

(Table 1 about here)

In this paper we start from the LM statistic because of its computational

advantages and local efficiency, noting also that its signed square root is locally

best invariant (King and Hillier (1985)). Ad hoc finite sample corrections

for LM tests have already been derived in the spatial econometrics literature.

Robinson (2008) considers a wide class of residual-based, asymptotically χ2

statistics which include LM ones for testing (1.5) in SAR models as special

cases, and suggests transformed statistics which are still asymptotically χ2, but

have exactly the mean and variance of a χ2 variate and are therefore expected

to have improved finite sample properties. Baltagi and Yang (2012), in line

with Koenker (1981), derive a standardised version of the square root of the
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LM statistic for testing (1.5) in a broad class of SAR-type models, which brings

the mean exactly to zero and the variance closer to that of the normal limiting

variate. Our main contribution is to develop tests based on the Edgeworth

expansion of the distribution function of the LM statistic. We focus on tests

against (1.6), but results for one-sided alternatives are simple corollaries. Our

Edgeworth-corrected tests are also compared in Monte Carlo simulations with

bootstrap-based tests, which are expected to achieve a similar refinement (see

e.g. Singh (1981), Hall (1992)). Despite the advantages of bootstrap-based tests,

we believe that our analytical approach is worthwhile as it sheds light on the

magnitude of correction terms and offers insight on the adequacy of the standard

χ2 approximation for different choices of W, while our refined test statistics are

still relatively simple and require no further nuisance parameter estimates, and

perform comparably to bootstrap ones in small and moderately-sized Monte

Carlo samples.

The derivation of the Edgeworth expansion for the distribution of LM un-

der (1.5) and corrected tests are the focus of the following section, Theorem

proofs being left to an Appendix. In Section 3 we derive the finite sample cor-

rections of Robinson (2008) in the SAR case, so as to compare performance

with Edgeworth-corrected tests. Some results on local power are presented in

Section 4. A Monte Carlo comparison of the various tests is reported in Section

5. Section 6 contains final comments.

In Robinson and Rossi (2012) (hereafter RR), Edgeworth-corrected tests

of (1.5) in (1.2) and (1.4) are developed, based on the least squares estimate

of λ. While this estimate converges in probability to zero under (1.5), it is

inconsistent, not converging in probability to λ when λ 6= 0. Thus the tests of

RR might not always be consistent, and will not enjoy the optimal local power

properties of LM tests.

2 EDGEWORTH EXPANSION AND CORRECTED TESTS

The LM statistic for testing (1.5) in (1.1) against (1.6) is

LM = T 2, T =
n√

tr(W 2 +WW ′)

y′PWPy

y′Py
, (2.1)

where P = I − X(X ′X)−1X ′, I = In; in (1.2) P = I and in (1.3) P = I −
l(l′l)−1l′. The statistic LM was derived by Burridge (1980) who noted that it is

equivalent to that of Cliff and Ord (1972), which in turn is related to a statistic
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of Moran (1950); for extensions to more general models, see also Anselin (1988,

2001), Baltagi and Li (2004), Pinkse (2004). As noted by Burridge (1980),

(2.1) is also the LM statistic for testing (1.5) against the spatial moving average

model u = ε+λWε (a corresponding equivalence to that found with time series

models).

The derivation of (2.1) is based on a Gaussian likelihood but as usual its

first order limit distribution obtains more generally. Under suitable conditions

we have as n→∞
P (LM ≤ η) = Ψ(η) + o(1) (2.2)

for any η > 0, where Ψ denotes the distribution function (df) of a χ2
1 random

variable. Thus (1.5) is rejected in favour of (1.6) if LM exceeds the appropriate

percentile of the χ2
1 distribution. We can likewise test (1.5) against a one-sided

alternative, λ > 0 (< 0), by comparing T (−T ) with the appropriate N (0, 1)

upper (lower) percentile. The present paper mainly focusses on two-sided tests.

We omit mild sufficient conditions for (2.2), because we wish to consider

statistics with better finite-sample properties and we only justify these under

the restrictive

Assumption 1 The εi are independent N
(
0, σ2

)
random variables.

The normality assumption is common in higher-order asymptotic theory

since Edgeworth expansions and resulting test statistics are otherwise compli-

cated by the presence of cumulants of εi.

For a real matrix A =(aij), let ||A|| be the spectral norm of A (i.e. the

square root of the largest eigenvalue of A′A) and let ||A||∞ be the maximum

absolute row sums norm of A (i.e. ||A||∞ = max
i

∑
j

|aij |, where i and j vary

respectively across all rows and columns of A). We introduce:

Assumption 2

(i) For all n, wii = 0, i = 1, ...., n.

(ii) As n→∞, ||W ||∞ + ||W ′||∞ = O (1).

(iii) As n → ∞, wij = O(1/h), uniformly in i, j, where h = hn is bounded

away from zero for all n and h/n→ 0 as n→∞.

If W is row normalized such that Wl = l, with wij = wji ≥ 0, all i, j, (as

in (1.7)), part (ii) is automatically satisfied. The sequence h defined in (iii) can

be bounded or divergent, and this distinction affects the rate of convergence to
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the null distribution, the order of the leading Edgeworth correction term being

h/n. For W given by (1.7), h ∼ m, explaining our remark that the (m, r) used

in Table 1, where m increases, slowly, with n, correspond to slow convergence.

In addition, we impose a standard boundedness and lack-of-multicollinearity

condition on X. Throughout, K denotes a finite generic constant. We introduce

Assumption 3 Uniformly in i, j, n, |xij | ≤ K, and as n→∞, || (X ′X/n)
−1 ||−1 =

O (1).

For notational convenience define

a =
h

n
tr(W ′W +W 2), b =

h

n
tr((W +W ′)3), c =

h

n
tr((W +W ′)4), (2.3)

d = tr(X ′(W +W ′)2X(X ′X)−1), e = tr((X ′X)−1X ′WX), (2.4)

f = tr(X ′(W +W ′)X(X ′X)−1X ′(W ′ +W )X(X ′X)−1)/2. (2.5)

To ensure that leading terms appearing in the theorem below are well defined,

we introduce:

Assumption 4

lim
n→∞

a > 0. (2.6)

Under Assumption 2, a, b and c in (2.3) are O(1), since tr(WA) = O(n/h)

for any real A such that ||A||∞ = O(1). Assumption 4 ensures that (the non-

negative) a is positive in the limit. Also, under Assumptions 2 and 3, d, e and

f are O(1). Now define

ψ(x) =
1√
2π
x−1/2e−x/2, x > 0, (2.7)

v1 =

(
3

a2

(
c

4
− eb

3

)
− e2 + f − d

a

)
, v2 =

1

a2

(
c

4
− eb

3

)
, (2.8)

ω1(η) = v1η − v2η2, (2.9)

ω2(η) = hω1(η)− 2(k + 2)η + 2η2. (2.10)

Both ω1(.) and ω2(.) are generally non-homogeneous quadratic functions of η

with known coefficients. The proof of the following theorem 1 is in the Ap-

pendix.

Theorem 1 Let (1.1) and Assumptions 1-4 hold. Under H0 (1.5), for any real
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η > 0, the df of LM in (2.1) admits the formal Edgeworth expansion

P (LM ≤ η) = Ψ(η) +
h

n
ω1(η)ψ(η) + o

(
h

n

)
, (2.11)

in case h→∞ as n→∞, and

P (LM ≤ η) = Ψ(η) +
1

n
ω2(η)ψ(η) + o

(
1

n

)
, (2.12)

in case h = O(1) as n→∞, and

ω1(η) = O(1), ω2(η) = O(1), (2.13)

as n→∞.

Since (2.11) and (2.12) entail better approximations than (2.2) and depend

on known quantities, they can be used directly in approximating the df of LM.

The two outcomes in Theorem 1 create a dilemma for the practitioner be-

cause it cannot be determined for finite n whether to treat h as “divergent”

or “bounded”. However, (2.12) is justified also when h is divergent because the

extra term in the expansion, −2((k + 2)η − η2)/n , is o(h/n). We retain both

(2.11) and (2.12) to stress the possible dependence of our expansion on both n

and h, which is peculiar in SAR models, and the slow convergence of LM in

case h is divergent.

Theorem 1 holds for the pure SAR model (1.2) on setting d = e = f = k = 0

in (2.11) and (2.12). In (1.3) d, e and f can be likewise simplified, in particular,

when Wl = l, d = 2(1 + l′WW ′l/n), e = 1 and f = 2.

To derive corrected tests, define wα such that P (LM ≤ wα) = 1 − α, so a

test that rejects (1.5) when LM > wα has exact size α. Let Φ(zα) = 1 − α,

where Φ denotes the standard normal df. From (2.2), a test based on (2.1) that

rejects H0 in (1.5) against (1.6) when

LM > z2α/2 (2.14)

has approximate size α. Theorem 1 can be used to derive approximations of wα

that are more accurate than z2α/2 (cf Cordeiro and Ferrari (1991), for example).

For h divergent and bounded define, respectively,

sα = z2α/2 −
h

n
ω1(z2α/2), (2.15)
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and

sα = z2α/2 −
1

n
ω2(z2α/2). (2.16)

From Theorem 1, we obtain:

Corollary 1 Let (1.1) and Assumptions 1-4 hold. Under H0 (1.5),

wα = z2α/2 +O

(
h

n

)
, (2.17)

wα = sα + o

(
h

n

)
, (2.18)

as n→∞, with sα defined in (2.15)/(2.16) in case h is divergent/bounded.

The proof of Corollary 1 is in the Appendix. When h is bounded, the

remainders in (2.17) and (2.18) are O(1/n) = O(h/n) and o(1/n) = o(h/n),

respectively. The use of (2.18) in (2.18) is justified also when h diverges, since

the extra terms in ω2 are o(h/n). From Corollary 1, we conclude that a test

that rejects H0 in (1.5) against (1.6) when

LM > sα (2.19)

has size which is closer to α than (2.14).

As an alternative to correcting critical values, we can apply Theorem 1 to

construct a monotonic transformation of LM whose distribution better approx-

imates χ2
1 than that of LM itself (see e.g. Kakizawa (1996)).

Corollary 2 Let (1.1) and Assumptions 1-4 hold. Under H0 (1.5),

P (v(LM) > z2α/2) = α+ o

(
h

n

)
, (2.20)

where

v(x) = x+
h

n
ω1(x) +

(
h

n

)2(
1

4
v21x+

1

3
v22x

3 − 1

2
v1v2x

2

)
, (2.21)

when h→∞ as n→∞, and

v(x) =x+
1

n
ω2(x) +

1

n2
(
1

4
(hv1 − 2(k + 2))2x+

1

3
(2− v2h)2x3

+
1

2
(hv1 − 2(k + 2))(2− v2h)x2), (2.22)
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when h = O(1) as n→∞.

The remainder in (2.20) is o(1/n) = o(h/n) when h is bounded. From (2.20)

we deduce that a test that rejects H0 when

v(LM) > z2α/2 (2.23)

is more accurate than (2.14).

3 MOMENTS-BASED CORRECTION

Robinson (2008) proposed both mean-adjusted and mean-and-variance-adjusted

variants of (2.1), which might be expected to have better finite sample proper-

ties than (2.1), while still being asymptotically χ2
1. Since mean adjusting alone

might, for smallish n, increase variance, offsetting the gain in accuracy from

centering, we focus on the mean-and-variance correction. Such corrected statis-

tics are theoretically convenient since under (1.5), (2.1) depends on the ratio

ε′PWPε/ε′Pε, which is independent of its denominator, so its moments can be

explicitly calculated (Pitman (1937)).

The mean-and-variance-adjusted statistic in Robinson (2008) starts from

(
2

V ar(LM)

)1/2

(LM − E(LM)) + 1, (3.1)

then replacing E(LM) and V ar(LM) by approximations. Under Assumptions

1-4 and (1.5),

E(LM) = 1 +
h

na
(e2 + f − d) + o

(
h

n

)
,

when h→∞ as n→∞, and

E(LM) = 1 +
h

na
(e2 + f − d)− 2(1− k)

n
+ o

(
1

n

)
,

when h = O(1) as n→∞. By formulae for moments of normal quadratic forms

(see e.g. Ghazal (1996)),

V ar(LM) = 2 +
h

na

(
4(e2 + f − d) +

3c− be
a

)
+ o

(
h

n

)
,
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when h is divergent, and

V ar(LM) = 2 +
h

na

(
4(e2 + f − d) +

3c− be
a

)
− 8(4− k)

n
+ o

(
1

n

)
,

when h is bounded. Thus

(3.1) = LM1 + op

(
h

n

)
when h→∞, and

(3.1) = LM2 + op

(
1

n

)
when h = O(1), where

LM1 = LM − h

na

(
(e2 + f − d)LM +

3c− be
4a

(LM − 1)

)
, (3.2)

LM2 = LM− h

na

(
(e2 + f − d)LM +

3c− be
4a

(LM − 1)

)
+

1

n
(−6+2(4−k)LM).

(3.3)

By construction, LM1 and LM2 have mean and variance which are closer to

those of a χ2
1 random variable than LM, so we expect the test that rejects H0

when

LMi > z2α/2, (3.4)

where i = 1 for h divergent and i = 2 for h bounded, will have size closer

to α than (2.14). Though LM1 is computationally simpler, LM2 is valid also

when h is divergent, since (−6 + 2(4− k)LM)/n is op(h/n). The finite sample

performance of (3.4) is compared to (2.19) and (2.23) in Section 6.

4 ANALYSIS OF LOCAL POWER

We now focus on testing (1.5) in (1.1) against the local alternatives

H1 : λn =

(
h

n

)1/2

δ, δ 6= 0. (4.1)

It follows from (1.1) that

y = Xβ + S−1(λn)ε, (4.2)
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where S(x) = I − xW, because for n large enough |λn| < 1 and existence of

S−1(λn) is guaranteed by Assumption 2. For Z ∼ N (0, 1) , denote by Ψ (x; ν)

the df of (Z + ν)2, the non-central χ2
1 random variable with noncentrality pa-

rameter ν, its probability density function (pdf) being

ψ (x; ν) =
1√
2π
x−1/2 cosh

(
νx1/2

)
exp

(
−
(
x+ ν2

)
/2
)
, x > 0. (4.3)

Define also

τ (x; ν) =

√
2

π
sinh

(
νx1/2

)
exp

(
−1

2

(
x+ ν2

))
, x > 0, (4.4)

p =
h

n
tr(W 2W ′), (4.5)

Theorem 2 Let (1.1) and Assumptions 1-4 hold. Under H1 (4.1), for any real

η > 0, the df of LM in (2.1) admits the formal Edgeworth expansion

P (LM ≤ η) =Ψ
(
η; a1/2δ

)
+

(
h

n

)1/2
(
a−1/2 (e+ δ2p

)
−
b
(
aδ2 + 1

)
6a3/2

)
τ
(
η; a1/2δ

)
−
(
h

n

)1/2
bδ

2a
ηψ
(
η; a1/2δ

)
−
(
h

n

)1/2
b

6a3/2
ητ
(
η; a1/2δ

)
+ o

((
h

n

)1/2
)
,

(4.6)

where

a−1/2
(
e+ δ2p

)
−
b
(
aδ2 + 1

)
6a3/2

= O(1),
bδ

2a
= O(1),

b

6a3/2
= O(1)

as n→∞.

The first-order asymptotic approximation to the df of LM under H1 (4.1)

has error O((h/n)1/2). Terms of higher order could be derived at expense of

considerable algebraical complication.

Theorem 2 can be used to derive a more accurate approximation for the

local power of the LM test of H0 against (4.1). Define the power function

Π(x) = P (LM > x) = 1− P (LM ≤ x). From Theorem 2 the test in (2.14) has
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local power

Π(z2α/2) =1 − Ψ
(
z2α/2; a1/2δ

)
−
(
h

n

)1/2
(
a−1/2 (e+ δ2p

)
−
b
(
aδ2 + 1

)
6a3/2

)
τ
(
z2α/2; a1/2δ

)
+

(
h

n

)1/2
bδ

2a
z2α/2ψ

(
z2α/2; a1/2δ

)
+

(
h

n

)1/2
b

6a3/2
z2α/2τ

(
z2α/2; a1/2δ

)
+ o

((
h

n

)1/2
)
.

(4.7)

Even the signs of the correction terms can vary with W , but the terms can

be numerically evaluated for any given W . It is therefore possible to establish

whether the actual local power of (2.14) is likely to be higher or lower than that

of (2.14). It is worth stressing that (4.7) holds also in case of tests (2.19), (2.23)

and (3.4) since the extra terms implied by the size-corrections would be of order

o((h/n)1/2). Hence, tests (2.19), (2.23) and (3.4) have sizes which are closer

to α than (2.14), which has local power as in (4.7). The paper is concerned

with refinements of the LM test and a comparison between its higher-order

power with other existing tests of (1.5) is beyond our scope, but Theorem 2 can

be useful for further studies on higher-order efficiency of tests of H0 (1.5) in

SAR models, along the lines of e.g. Peers (1971), Taniguchi (1991) or Rao and

Mukerjee (1994).

5 BOOTSTRAP CORRECTION AND SIMULATIONS

Monte Carlo simulations to investigate finite sample performance of the tests

developed above, and bootstrap tests, were carried out. The Monte Carlo design,

and initial bootstrap specification, correspond to those in RR, except that they

focussed only on the models (1.2) and (1.3), which have no varying regressors.

Our bootstrap test against (1.6) was obtained (see e.g. Paparoditis and Politis

(2005)) by computing the independent bootstrap null statistics

LM∗j = (nh/a)(u∗
′

j PWPu∗j/u
∗′
j Pu

∗
j )

2, j = 1, ....., 199, (5.1)

each u∗j being a vector of independent N (0, y′Py/n) variables. For α = 0.05,

denote by w∗α the largest value solving
∑199
j=1 1(LM∗ ≤ w∗α)/199 ≤ 1 − α, 1(.)

denoting the indicator function. We reject H0 (1.5) against (1.6) when

LM > w∗α. (5.2)
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We choose W as in (1.7), whence h = m−1, W is symmetric, satisfies Wl = l

and has non-negative elements. Since the tests derived in the previous sections

can vary depending on whether h is divergent or bounded, we reflect both

cases in our choices of (m, r). We choose (m, r) = (8, 5), (12, 8), (18, 11) and

(28, 14) (as in Table 1, and corresponding to n = 40, 96, 198, 392) to represent

“divergent” h, and (m, r) = (5, 8), (5, 20), (5, 40) and (5, 80) (which correspond

to n = 40, 100, 200, 400) to represent “bounded” h.

As in Table 1 the εi were generated as N (0, 1) , and results are based on 1000

replications. In the Tables we denote by “chi square”, “Edgeworth”, “trans-

formation”, “mean-variance correction” and “bootstrap” the empirical sizes of

tests (2.14), (2.19), (2.23), (3.4) and (5.2), respectively; in the text we use the

respective abbreviations C, E, T, MV and B. Tables 2-7 report empirical sizes

of the tests for models (1.1), (1.2) and (1.3).

(Tables 2 and 3 about here)

Tables 2 and 3 concern the regression model with SAR disturbances (1.1),

where k = 3, with X having first column l, and elements of the other two

columns generated independently and uniformly [0, 1], when h (and thus m

in (1.7)) is “divergent” and “bounded”, respectively. The standard test C is

considerably under-sized in both cases, and the overall pattern of the results is

consistent with the results in Theorem 1, where the df of LM converges at rate

n when h is bounded and at the slower n/h when h is divergent. Indeed, from

the first row of Table 2, as n increases from n = 40 to n = 392, the deviation

between empirical and nominal sizes only decreases by 47%, while from the first

row of Table 3 such deviation decreases by 85% when n increases from n = 40

to n = 400. The Edgeworth-corrected tests E and T seem to perform very well

in both cases, offering an average (across sample sizes considered) respective

improvement over C of 52% and 54% when h is “divergent”, and of 52% and

50% when h is “bounded”. The MV test is very under-sized, the discrepancy

between actual and nominal values decreasing by only 2% and 18% for “diver-

gent” and “bounded” h, respectively, compared to C. The average improvement

offered by B is 71% when h is “divergent, and 50% when h is “bounded” and

its performance is comparable (or even superior, in case h is “divergent”) to E

and T. Overall, E, T and B perform very well.

(Tables 4 and 5 about here)
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Tables 4 and 5 concern pure SAR (1.2) for “divergent” and “bounded” h,

respectively. Although less severely than in Tables 2 and 3, C is under-sized

for all n. When h is “divergent ”and as n increases from n = 40 and n = 392,

the deviation between actual and nominal values decreases by 40%, while when

h is “bounded” and n increases from n = 40 to n = 400 it decreases by 75%,

consistently with Theorem 1 (with d = e = f = k = 0). Also, when h is

“divergent” sizes for E, T, MV and B are, respectively, on average across the

sample sizes considered, 57%, 42%, 14% and 69% closer to 0.05 than those for

C. Such figures become 61%, 51%, 22% and 60% when h is “bounded”. In both

cases the performance of E, T and B is satisfactory, with B and E offering the

greatest improvement when h is “divergent” and “bounded”, respectively. The

test MV, again, is less satisfactory than T, E and B, even though its performance

is slightly better than that in Tables 2 and 3.

(Tables 6 and 7 about here)

Tables 6 and 7 concern the intercept model (1.3)/(1.4) for “divergent” and

“bounded” h, respectively. The pattern remains similar. On average across the

sample sizes considered, for E, T and B the discrepancies between actual and

nominal values are reduced by 65%, 46% and 74% when h is “divergent”, and by

57%, 88% and 52% when h is “bounded”. Overall, E, T and B perform well, with

B offering the highest improvement when h is “divergent” and T considerably

outperforming both E and B when h is “bounded”. Surprisingly, when h is

“divergent” the MV test is outperformed by C: on average the empirical sizes

for C are 28% closer to the nominal values than those for MV. However, when

h is “bounded” MV offers an average improvement of 45% over C.

In Tables 8-13 we examine powers of (the non-size-corrected tests) C, E, T,

MV and B against

H1 : λ = λ̄ 6= 0, (5.3)

for λ̄ = 0.1, 0.5 and 0.8.

(Tables 8 and 9 about here)

Tables 8 and 9 concern the same regression setting as in Tables 2 and 3.

We observe that C, E, T and B perform well for all n, with C slightly the

worst. The few exceptions occur for λ̄ = 0.1, where E and T are outperformed

by C for (m, r) = (18, 11) and (m, r) = (5, 80), respectively. MV, instead, is

outperformed by C for all sample sizes in almost all settings. Overall, B seems

to offer the highest power.
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(Tables 10 and 11 about here)

Tables 10 and 11 concern pure SAR (1.2). Again, MV has overall the lowest

power. More interestingly, in case h is “divergent”, for λ̄ = 0.1 and λ̄ = 0.5 E

and T offer a slightly lower power than the standard test C for some sample

sizes. C, in turn, is outperformed by B for all sample sizes and all choices of λ̄.

When h is “bounded”, instead, E, T and B have comparable performances and

are superior to C.

(Tables 12 and 13 about here)

Tables 12 and 13 concern the intercept model (1.3)/(1.4). Similarly to Tables

8-11, MV overall performs worst. When h is “divergent” C has lower power than

E, T and B, with few exceptions in which E and T perform slightly worse than

C (i.e for λ̄ = 0.5 when (m, r) = (12, 8) and (m, r) = (28, 14)). Overall, when h

is “divergent”, B seems to have the highest power. The pattern of the results for

“bounded” h is similar to Table 11, with E, T and B having similar performance

and offering higher power than C.

Comparisons can be made with the Monte Carlo results reported in RR.

The settings only overlap to a limited extent, because RR studied only (1.2)

and (1.4), not more general regression models, they did not look at MV-type

tests, and on the other hand they included tests of the one-sided alternative

λ > 0. Subject to this we can compare the results in our Tables 4-7 with results

of RR. Generally their tests corresponding to our C tests are very over-sized,

especially for the intercept model. Their Edgeworth and transformation tests

are much improved, though still quite poorly sized for the smallest n, and on

the whole ours perform better here also. The bootstrap results are closer, with

the LM tests doing better in 10 out of 16 cases.

(Tables 14 and 15 about here)

In Tables 14-17 we assess the performance of our tests against (1.6) for SAR

for y, (1.1) when εi is non-normal. We generate εi as Laplace, with pdf

pdf(x) = 2−1/2exp(−21/2|x|). (5.4)

We compare the Edgeworth-corrected tests (2.19) and (2.23) with a bootstrap

test. The 199 bootstrap statistics are obtained as in (5.1), but with each u∗j gen-

erated by resampling with replacement from the (centred) empirical distribution

of Py.
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Tables 14 and 15 report empirical sizes when h is “divergent” and “bounded”,

respectively. The Edgeworth-corrected tests improve on C, indeed, when h is

“divergent” the empirical sizes of E and T are 51% and 41% closer to 0.05, on

average across sample sizes considered, but improve less when h is “bounded”

(by 29% and 24%). As expected, B offers the greatest improvements since

bootstrap critical values do not reflect distributional assumptions. On average

across n, the sizes obtained by bootstrap critical values are 62% and 56% closer

to 0.05 than those based on C. Our results suggest that in the present setting

our normality-based Edgeworth-corrected tests E and T provide a “partial”

correction when normality does not hold, and perform at least as well as C.

(Tables 16 and 17)

Finally, Tables 16 and 17 display empirical powers of the tests of H0 in (1.5)

for the regression setting of Tables 2 ad 3 when h is “divergent” and “bounded”

respectively. For all n, the performance is similar to that in Tables 8 and 9.

Except when (m, r) = (5, 80) and λ̄ = 0.1, E and T are more powerful than C.

6 FINAL COMMENTS

We have derived refined LM tests of lack of correlation against spatial autore-

gressive error correlation in regression models, using Edgeworth expansion, ex-

amined their local power, and compared their finite sample performance with

other tests. The tests are based on asymptotic thory, but they do seem to

improve on standard, uncorrected, tests in modest sample sizes. They are

relatively simple to compute, partly due to imposing normality. Edgeworth ex-

pansions without distributional assumptions can be derived, in terms of higher

order cumulants (e.g. Knight (1985)), but estimates of the latter tend to be

imprecise except in very large samples. As Ogasawara (2006a,b) found in other

settings, our normal-based tests will remain valid under only slight relaxation

of normality, with certain equality restrictions holding (e.g. zero fourth cumu-

lants). Bootstrap-based tests will be valid much more generally, and rival our

higher-order improvements, but bootstrap statistics do vary with implemen-

tation, and we believe that empirical researchers are still likely to report the

standard LM statistic and compare it with χ2 critical values, in which case it

costs little more to carry out our tests, which do not require estimation of any

further nuisance parameters. The paper makes other restrictive assumptions.
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The requirement of deterministic regressors is quite standard in the SAR lit-

erature, but our results should hold after conditioning on stochastic regressors

that are independent of errors. Relaxing exogeneity then becomes an issue,

but Edgeworth expansions allowing endogeneity would be considerably more

complicated. Allowing endogeneity of the weight matrix is also an important

issue, but so far as we know serious progress on allowing this, in the context

of first-order theory, has begun only recently, see Qu and Lee (2013). Other

assumptions will be more straightforward to relax, such as linearity of the re-

gression and homoscedasticity of the innovations εi.
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APPENDIX

Proof of Theorem 1

Since T in (2.1) is a continuous random variable,

P (LM ≤ η) = P (T ≤ η1/2)− P (T ≤ −η1/2). (A.1)
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Thus we derive the formal Edgeworth expansion of the df of T underH0,notation

following that in the proof of Theorem 1 of RR. Similarly to Phillips (1977),

P (T ≤ ζ) = P

(
(nh)1/2ε′PWPε

a1/2ε′Pε
≤ ζ
)

= P (ε′Cε ≤ 0),

where

C =
1

2
P (W +W ′)P −

( a

nh

)1/2
Pζ (A.2)

and ζ is any real number.

Under Assumption 1, the characteristic function (cf) of ε′Cε is

E(eit(ε
′Cε)) =

1

(2π)n/2σn

∫
<n

eit(ξ
′Cξ)e−

ξ′ξ
2σ2 dξ =

1

(2π)n/2σn

∫
<n

e−
1

2σ2
ξ′(I−2itσ2C)ξdξ

=det(I − 2itσ2C)−1/2 =

n∏
j=1

(1− 2itσ2γj)
−1/2, (A.3)

where det(A) denotes the determinant of a square matrix A, the γj are eigen-

values of C and i =
√
−1. From (A.3) the cumulant generating function (cgf)

of ε′Cε is

ψ(t) =− 1

2

n∑
j=1

ln(1− 2itσ2γj) =
1

2

n∑
j=1

∞∑
s=1

(2itσ2γj)
s

s

=
1

2

∞∑
s=1

(2itσ2)s

s

n∑
j=1

γsj =
1

2

∞∑
s=1

(2itσ2)s

s
tr(Cs)

and thus the s-th cumulant, κs, of ε′Cε is

κ1 = σ2tr(C), (A.4)

κ2 = 2σ4tr(C2), (A.5)

κs =
σ2ss!2s−1tr(Cs)

s
, s > 2. (A.6)

The cgf of (ε′Cε− κ1)/κ
1/2
2 is

ψc(t) = −1

2
t2 +

∞∑
s=3

κcs(it)
s

s!
, (A.7)
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where κcs = κs/κ
s/2
2 . Hence,

E(eit(ε
′Cε−κ1)/κ

1/2
2 ) =e−

1
2 t

2

exp{
∞∑
s=3

κcs(it)
s

s!
}

=e−
1
2 t

2

{1 +

∞∑
s=3

κcs(it)
s

s!
+

1

2!
(

∞∑
s=3

κcs(it)
s

s!
)2 +

1

3!
(

∞∑
s=3

κcs(it)
s

s!
)3 + .....}

=e−
1
2 t

2

{1 +
κc3(it)3

3!
+
κc4(it)4

4!
+
κc5(it)5

5!
+ {κ

c
6

6!
+

(κc3)2

(3!)2
}(it)6 + .....}.

Denote by φ(ζ) the normal pdf. By Fourier inversion, formally,

P ((ε′Cε−κ1)/κ
1/2
2 ≤ z) =

z∫
−∞

φ(z)dz+
κc3
3!

z∫
−∞

H3(z)φ(z)dz+
κc4
4!

z∫
−∞

H4(z)φ(z)dz+....,

where Hi(z) is the i− th Hermite polynomial. Collecting the above results,

P (T ≤ ζ) =P (ε′Cε ≤ 0) = P ((ε′Cε− κ1)/κ
1/2
2 ≤ −κc1)

=Φ(−κc1)− κc3
3!

Φ(3)(−κc1) +
κc4
4!

Φ(4)(−κc1) + ...,

where q(i) denotes the ith derivative of the function q.

From (A.3)-(A.5),

κ1 = σ2

(
tr(PW )−

( a

nh

)1/2
tr(P )ζ

)
= −σ2

(
e+

(na
h

)1/2
ζ − a1/2k

(nh)1/2
ζ

)
and

κ2 = σ4(tr(W 2) + tr(W ′W ) +
1

2
tr(X ′(W +W ′)X(X ′X)−1X ′(W ′ +W )X(X ′X)−1)

− tr(X ′(W +W ′)2X(X ′X)−1) + 2
(n− k)a

nh
ζ2 +

4tr((X ′X)−1X ′WX)a1/2

(nh)1/2
ζ)

= σ4

(
n

h
a+ f − d+ 2

(
a

h
− ak

nh

)
ζ2 +

4ea1/2

(nh)1/2
ζ)

)
,

where a, d, e and f are defined in (2.3), (2.4) and (2.5). Thus

κc1 =

(
−ζ − e(h/n)1/2a−1/2 +

k

n
ζ

)(
1 +

h

n
a−1(f − d) + 2

ζ2

n
+ o

(
1

n

))−1/2
.
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By Taylor expansion, we deduce

κc1 = −ζ − e
(
h

n

)1/2

a−1/2 +
1

2

h

n
a−1(f − d)ζ + o

(
h

n

)
, (A.8)

when h is divergent, and

κc1 = −ζ − e
(
h

n

)1/2

a−1/2 +
1

2

h

n
a−1(f − d)ζ +

1

n

(
ζ2 + k

)
ζ + o

(
1

n

)
, (A.9)

when h is bounded.

Also, from (A.6) and (A.5),

κc3 =
8σ6tr(C3)

κ
3/2
2

=
tr((P (W +W ′)P )3)

(n/h)3/2a3/2
+ o

(
h

n

)
=

(
h

n

)1/2
b

a3/2
+ o

(
h

n

)
,

(A.10)

when h is divergent, and

κc3 =
tr((P (W +W ′)P )3)

(n/h)3/2a3/2
− 6htr(((W +W ′)P )2)ζ

n2a
+ o

(
1

n

)
=

(
h

n

)1/2
b

a3/2
− 12ζ

n
+ o

(
1

n

)
, (A.11)

when h is bounded. Similarly, for h either divergent or bounded,

κc4 =
48σ8tr(C4)

κ22
=

3tr(((W +W ′)P )4)

(n/h)2a2
+ o

(
h

n

)
=
h

n

3c

a2
+ o

(
h

n

)
,

where c is defined in (2.3).

From (A.8) and (A.9) and by Taylor expansion, we obtain, respectively,

Φ(−κc1) = Φ(ζ) +

(
h

n

)1/2

ea−1/2φ(ζ) +
h

n

f − d+ e2

2a
Φ(2)(ζ) + o

(
h

n

)
,

when h is divergent, and

Φ(−κc1) = Φ(ζ)+
1

n1/2
h1/2ea−1/2φ(ζ)+

1

n

(
h(e2 + f − d)

2a
+ ζ2 + k

)
Φ(2)(ζ)+o

(
1

n

)
,

when h is bounded. Similarly,

Φ(3)(−κc1) = Φ(3)(ζ) +

(
h

n

)1/2

ea−1/2Φ(4)(ζ) +O

(
h

n

)
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whether h is divergent or bounded.

Noting that

Φ(2)(x) = −xφ(x), Φ(3)(x) = (x2 − 1)φ(x), Φ(4)(x) = (3x− x3)φ(x),

and collecting the above results, under H0 when h is divergent:

P (T ≤ ζ) = Φ(ζ) +

(
h

n

)1/2(
e

a1/2
φ(ζ)− b

6a3/2
Φ(3)(ζ)

)
+
h

n

(
e2 + f − d

2a
Φ(2)(ζ) +

1

2a2

(
c

4
− eb

3

)
Φ(4)(ζ)

)
+ o

(
h

n

)

= Φ(ζ) +

(
h

n

)1/2(
e

a1/2
− b

6a3/2
(ζ2 − 1)

)
φ(ζ)

+
h

n

(
−e
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2a

ζ − 1

2a2

(
c

4
− eb

3

)
(ζ3 − 3ζ)

)
φ(ζ) + o

(
h

n

)
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(
h

n

)1/2(
e

a1/2
− b

6a3/2
(ζ2 − 1)

)
φ(ζ)

+
h

n

ω1

(
ζ2
)

2ζ
φ(ζ) + o

(
h

n

)
,

since

−e
2 + f − d

2a
ζ − 1

2a2

(
c

4
− eb

3

)
(ζ3 − 3ζ) =

1

2
v1ζ −

1

2
v2ζ

3 =
ω1

(
ζ2
)

2ζ
;

when h is bounded:

P (T ≤ ζ) = Φ(ζ) +

(
h

n

)1/2(
e

a1/2
φ(ζ)− b

6a3/2
Φ(3)(ζ)

)
+

1

n

((
h(e2 + f − d)

2a
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)
Φ(2)(ζ) + 2ζΦ(3)(ζ) +

h
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(
c

4
− eb

3

)
Φ(4)(ζ)

)
+ o
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1

n
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(
h

n

)1/2(
e
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,
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since

−

(
h
(
e2 + f − d

)
2a

+ ζ2 + k

)
ζ + 2ζ(ζ2 − 1)− h

2a2

(
c

4
− eb

3

)
(ζ3 − 3ζ)

=
h

2
v1ζ −

h

2
v2ζ

3 − ζ(k + 2) + ζ3 =
ω2

(
ζ2
)

2ζ
.

Now for Z ∼ N (0, 1),

Φ(η1/2)− Φ(−η1/2) = P
(
|Z| ≤ η1/2

)
= P

(
Z2 ≤ η

)
= Ψ (η) ,

while, from (2.8),

η−1/2
(
φ(η1/2) + φ(−η1/2)

)
= 2ψ (η) .

Thus, from (A.1),

P (LM ≤ η) = Φ(η1/2)− Φ(−η1/2) +
h

n

ωi(η)

2η1/2
(φ(η1/2) + φ(−η1/2)) + o

(
h

n

)
,

for i = 1 when h is divergent and i = 2 when h is bounded, to give (2.12) and

(2.13).

Proof of Corollary 1

Let h be divergent. By inverting (2.11), we can expand wα as

wα = z2α/2 + p1(z2α/2) + o

(
h

n

)
, (A.12)

where p1(z2α/2) is a polynomial whose coefficients have exact order h/n, and can

be determined from 1− α = P (LM ≤ wα) and (2.11). Thus, using (2.11),

1− α = P (LM ≤ wα) = Ψ(wα) +
h

n
ω1(wα)ψ(wα) + o

(
h

n

)
.
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Substituting (A.12), this is

P (LM ≤ wα) =Ψ(z2α/2) + p1(z2α/2)ψ(z2α/2) +
h

n
ω1(z2α/2)ψ(z2α/2) + o

(
h

n

)
=1− α+ p1(z2α/2)ψ(z2α/2) +

h

n
ω1(z2α/2)ψ(z2α/2) + o

(
h

n

)
.

The latter is 1−α+o(h/n) (rather than 1−α+O(h/n)) when we take p1(x) =

−hω1(z2α/2)/n, which has exact order h/n. Hence, (2.17) and (2.18) follow

from (A.12). The corresponding result for bounded h follows analogously from

(2.12).

Proof of Theorem 2

The prof is similar to that of Theorem 1 so some details will be omitted. In

view of (A.1), we derive the Edgeworth expansion of T under H1. Write

P (T ≤ ζ) = P (ε′Cε ≤ 0),

with

C =
1

2
S−1(λn)′P (W +W ′)PS−1(λn)− 1

(hn)1/2
ζa1/2S−1(λn)′PS−1(λn).

The cumulants κj of ε′Cε are

κ1 =σ2tr(C)

=σ2

(
1

2
tr

( ∞∑
t=0

(λnW
′)tP (W +W ′)P

∞∑
t=0

(λnW )t

)
− ζa1/2

(nh)1/2
tr

( ∞∑
t=0

(λnW
′)tP

∞∑
t=0

(λnW )t

))

=σ2

(
−
(n
h

)1/2
a1/2(ζ − δa1/2)− e+

h

n
δ2tr(W 3 + 2W 2W ′)

)
+O

((
h

n

)1/2
)
,

and similarly

κ2 = 2σ4tr(C2) = σ4

(
n

h
a+ 2δ

(
h

n

)1/2

tr(W 3 + 3W 2W ′)

)
+O(1),
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where a and e are defined in (2.3) and (2.4), respectively. Thus, the first centred

cumulant of ε′Cε is

κc1 = −(ζ − δa1/2) +

(
h

n

)1/2

a−1/2
(
−e− δ2p+

1

2
δa−1/2bζ

)
+O

(
h

n

)
,

and accordingly,

Φ(−κc1) =Φ(ζ − δa1/2)

−
(
h

n

)1/2

a−1/2
(
−e− δ2p+

1

2
δa−1/2bζ

)
φ(ζ − δa1/2) +O

(
h

n

)
,

where b and p are defined in (2.3) and (4.5), respectively. Under H1, the leading

term of the third centred cumulant of ε′Cε is identical to that in (A.10)/(A.11),

which is

κc3 =
8σ6tr(C3)

κ
3/2
2

=

(
h

n

)1/2
b

a3/2
+O

(
h

n

)
.

Proceeding as in the proof of Theorem 1, under H1,

P (T ≤ ζ) =Φ(ζ − a1/2δ)−
(
h

n

)1/2

a−1/2
(
−e− δ2p+

1

2
δa−1/2bζ

)
φ(ζ − a1/2δ)

−
(
h

n

)1/2
b

6a3/2
Φ(3)(ζ − a1/2δ) +O

(
h

n

)
=Φ(ζ − a1/2δ)−

(
h

n

)1/2

a−1/2
(
−e− δ2p+

1

2
δa−1/2bζ

)
φ(ζ − a1/2δ)

−
(
h

n

)1/2
b

6a3/2

((
ζ − a1/2δ

)2
− 1

)
φ(ζ − a1/2δ) +O

(
h

n

)
=Φ(ζ − a1/2δ) +

(
h

n

)1/2

a−1/2
(
e+ δ2p

)
−
(
h

n

)1/2
δb

2a
ζφ(ζ − a1/2δ)

−
(
h

n

)1/2
b

6a3/2

(
ζ2 − 2a1/2δζ + aδ2 + 1

)
φ(ζ − a1/2δ) +O

(
h

n

)
=Φ(ζ − a1/2δ) +

(
h

n

)1/2
(
a−1/2

(
e+ δ2p

)
−
b
(
aδ2 + 1

)
6a3/2

)
φ(ζ − a1/2δ)

−
(
h

n

)1/2
bδ

6a
ζφ(ζ − a1/2δ)−

(
h

n

)1/2
b

6a3/2
ζ2φ(ζ − a1/2δ) + o

((
h

n

)1/2
)
.
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Noting that

Φ(ζ − ν)− Φ(−ζ − ν) =P (Z ≤ ζ − ν)− P (Z ≤ −ζ − ν)

=P ((Z + ν)
2 ≤ ζ2) = Ψ

(
ζ2; ν

)
,

φ(ζ − ν) + φ(−ζ − ν) =
1√
2π

(
exp

(
−1

2
(ζ − ν)

2

)
+ exp

(
−1

2
(ζ + ν)

2

))
=

√
2

π
cosh (νζ) exp

(
−1

2

(
ζ2 + ν2

))
=2ζψ

(
ζ2; ν

)
,

φ(ζ − ν)− φ(−ζ − ν) =
1√
2π

(
exp

(
−1

2
(ζ − ν)

2

)
− exp

(
−1

2
(ζ + ν)

2

))
=

√
2

π
sinh (νζ) exp

(
−1

2

(
ζ2 + ν2

))
= τ

(
ζ2; ν

)
,

and therefore

P (LM ≤ η) =Φ(η1/2 − a1/2δ)− Φ(−η1/2 − a1/2δ)

+

(
h

n

)1/2
(
a−1/2

(
e+ δ2p

)
−
b
(
aδ2 + 1

)
6a3/2

)(
φ(η1/2 − a1/2δ)− φ(−η1/2 − a1/2δ)

)
−
(
h

n

)1/2
bδ

6a
η1/2

(
φ(η1/2 − a1/2δ) + φ(−η1/2 − a1/2δ)

)
−
(
h

n

)1/2
b

6a3/2
η
(
φ(η1/2 − a1/2δ)− φ(−η1/2 − a1/2δ)

)
+O

(
h

n

)
=Ψ

(
η; a1/2δ

)
+

(
h

n

)1/2
(
a−1/2

(
e+ δ2p

)
−
b
(
aδ2 + 1

)
6a3/2

)
τ
(
η; a1/2δ

)
−
(
h

n

)1/2
bδ

2a
ηψ
(
η; a1/2δ

)
−
(
h

n

)1/2
b

6a3/2
ητ
(
η; a1/2δ

)
+ o

((
h

n

)1/2
)
,

to conclude the proof.

27



m = 8
r = 5

m = 12
r = 8

m = 18
r = 11

m = 28
r = 14

Wald 0.112 0.119 0.088 0.090
LR 0.075 0.071 0.070 0.075
LM 0.030 0.031 0.035 0.038

Table 1: Empirical sizes of standard Wald, LR and LM tests of H0 (1.5) against
H1 (1.6) for pure SAR (1.2) when h is “divergent”. α = 5%.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square 0.016 0.020 0.028 0.032

Edgeworth 0.035 0.036 0.039 0.041

transformation 0.033 0.038 0.043 0.039

mean-variance correction 0.015 0.022 0.029 0.032

bootstrap 0.040 0.055 0.056 0.058

Table 2: Empirical sizes of tests of H0 (1.5) against H1 (1.6) for regression with

SAR disturbances (1.1) when h is “divergent”. α = 5%.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square 0.024 0.031 0.044 0.046

Edgeworth 0.045 0.046 0.053 0.054

transformation 0.044 0.045 0.047 0.046

mean-variance correction 0.032 0.039 0.041 0.052

bootstrap 0.039 0.045 0.048 0.046

Table 3: Empirical sizes of tests of H0 (1.5) against H1 (1.6) for regression with

SAR disturbances (1.1) when h is “bounded”. α = 5%.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square 0.030 0.031 0.035 0.038

Edgeworth 0.042 0.042 0.043 0.045

transformation 0.039 0.037 0.040 0.045

mean-variance correction 0.022 0.032 0.033 0.037

bootstrap 0.057 0.045 0.047 0.055

Table 4: Empirical sizes of tests of H0 (1.5) against H1 (1.6) for the pure SAR

model (1.2) when h is “divergent”. α = 5%.
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m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square 0.030 0.038 0.039 0.045

Edgeworth 0.043 0.045 0.052 0.047

transformation 0.041 0.046 0.048 0.045

mean-variance correction 0.035 0.036 0.041 0.048

bootstrap 0.063 0.052 0.054 0.048

Table 5: Empirical sizes of tests of H0 (1.5) against H1 (1.6) for the pure SAR

model (1.2) when h is “bounded”. α = 5%.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square 0.031 0.032 0.034 0.039

Edgeworth 0.040 0.041 0.053 0.048

transformation 0.061 0.045 0.041 0.058

mean-variance correction 0.020 0.023 0.032 0.040

bootstrap 0.055 0.045 0.049 0.045

Table 6: Empirical sizes of tests of H0 (1.5) against H1 (1.6) for the intercept

model (1.3) when h is “divergent”. α = 5%.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square 0.023 0.035 0.036 0.042

Edgeworth 0.040 0.044 0.040 0.052

transformation 0.046 0.049 0.048 0.051

mean-variance correction 0.023 0.041 0.045 0.048

bootstrap 0.057 0.040 0.043 0.046

Table 7: Empirical sizes of tests of H0 (1.5) against H1 (1.6) for the intercept

model (1.3) when h is “bounded”. α = 5%.
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λ̄
m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square

0.1

0.5

0.8

0.0620

0.5850

0.9750

0.0790

0.8100

0.9990

0.0920

0.8890

1

0.0920

0.9530

1

Edgeworth

0.1

0.5

0.8

0.0730

0.6230

0.9750

0.0840

0.8150

1

0.0880

0.8980

1

0.1120

0.9540

1

transformation

0.1

0.5

0.8

0.0790

0.5980

0.9820

0.0910

0.8160

0.9980

0.0990

0.8920

1

0.1040

0.9540

1

mean-variance correction

0.1

0.5

0.8

0.0510

0.5860

0.9770

0.0650

0.7540

0.9990

0.0780

0.8760

1

0.0940

0.9410

1

bootstrap

0.1

0.5

0.8

0.1080

0.6580

0.9860

0.1100

0.8230

1

0.1260

0.9050

1

0.1270

1

1

Table 8: Empirical powers of tests of H0 (1.5) against H1 (5.3), with λ̄ =

0.1, 0.5, 0.8, for regression with SAR disturbances (1.1) when h is “divergent”.

α = 5%

λ̄
m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square

0.1

0.5

0.8

0.0850

0.7800

1

0.1290

0.9880

1

0.2130

1

1

0.3390

1

1

Edgeworth

0.1

0.5

0.8

0.0860

0.7820

1

0.1290

0.9920

1

0.2340

1

1

0.3390

1

1

transformation

0.1

0.5

0.8

0.0890

0.7920

0.9990

0.1370

0.9900

1

0.2180

1

1

0.3210

1

1

mean-variance correction

0.1

0.5

0.8

0.0730

0.7730

0.9990

0.1260

0.9920

1

0.2140

1

1

0.3370

1

1

bootstrap

0.1

0.5

0.8

0.0910

0.8090

0.9980

0.1300

0.9890

1

0.2290

1

1

0.3520

1

1

Table 9: Empirical powers of tests of H0 (1.5) against H1 (5.3), with λ̄ =

0.1, 0.5, 0.8, for regression with SAR disturbances (1.1) when h is “bounded”.

α = 5%.
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λ̄
m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square

0.1

0.5

0.8

0.1050

0.7110

0.9930

0.1200

0.8680

1

0.1290

0.9180

1

0.1312

0.9680

1

Edgeworth

0.1

0.5

0.8

0.1040

0.7220

0.9930

0.1140

0.8470

1

0.1210

0.9210

1

0.1315

0.9830

1

transformation

0.1

0.5

0.8

0.0960

0.7170

0.9960

0.1160

0.8470

1

0.1180

0.9300

1

0.1400

0.9560

1

mean-variance correction

0.1

0.5

0.8

0.0560

0.6300

0.9890

0.0910

0.8360

1

0.1070

0.9112

1

0.1130

0.9480

1

bootstrap

0.1

0.5

0.8

0.1070

0.7660

0.9960

0.1260

0.8790

0.9980

0.1340

0.9330

1

0.1370

1

1

Table 10: Empirical powers of tests of H0 (1.5) against H1 (5.3), with λ̄ =

0.1, 0.5, 0.8, for the pure SAR model (1.2) when h is “divergent”. α = 5%.

λ̄
m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square

0.1

0.5

0.8

0.1000

0.8700

1

0.1520

0.9940

1

0.2400

1

1

0.3560

1

1

Edgeworth

0.1

0.5

0.8

0.1130

0.8650

1

0.1580

0.9960

1

0.2440

1

1

0.3460

1

1

transformation

0.1

0.5

0.8

0.1160

0.8930

1

0.1800

0.9920

1

0.2410

1

1

0.3640

1

1

mean-variance correction

0.1

0.5

0.8

0.0960

0.8620

1

0.1610

0.9940

1

0.2090

1

1

0.3370

1

1

bootstrap

0.1

0.5

0.8

0.1240

0.9000

1

0.1660

0.9940

1

0.2110

1

1

0.3450

1

1

Table 11: Empirical powers of tests of H0 (1.5) against H1 (5.3), with λ̄ =

0.1, 0.5, 0.8, for the pure SAR model in (1.2) when h is “bounded”. α = 5%.
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λ̄
m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square

0.1

0.5

0.8

0.0550

0.6050

0.9810

0.0800

0.7900

0.9990

0.0930

0.8800

1

0.0980

0.9500

1

Edgeworth

0.1

0.5

0.8

0.0720

0.6150

0.9810

0.0920

0.7740

0.9990

0.1030

0.9030

1

0.1040

0.9360

1

transformation

0.1

0.5

0.8

0.0700

0.6140

0.9810

0.0810

0.7850

0.9990

0.0930

0.8920

1

0.0980

0.9400

1

mean-variance correction

0.1

0.5

0.8

0.0510

0.5510

0.9690

0.0580

0.7750

0.9960

0.0770

0.8870

1

0.0910

0.9250

1

bootstrap

0.1

0.5

0.8

0.0800

0.6270

0.9820

0.1110

0.8330

1

0.1190

0.8970

1

0.1220

0.9530

1

Table 12: Empirical powers of tests of H0 (1.5) against H1 (5.3), with λ̄ =

0.1, 0.5, 0.8, for the intercept model (1.3) when the sequence h is “divergent”.

α = 5%.

λ̄
m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square

0.1

0.5

0.8

0.0690

0.7800

0.9990

0.1310

0.9930

1

0.1990

1

1

0.3470

1

1

Edgeworth

0.1

0.5

0.8

0.1090

0.8070

0.9990

0.1390

0.9920

1

0.2080

1

1

0.3480

1

1

transformation

0.1

0.5

0.8

0.0960

0.8080

0.9980

0.1370

0.9880

1

0.2060

0.9990

1

0.3560

1

1

mean-variance correction

0.1

0.5

0.8

0.6880

0.7970

1

0.1380

0.9950

1

0.2190

1

1

0.3480

1

1

bootstrap

0.1

0.5

0.8

0.0950

0.8450

1

0.1440

0.9920

1

0.2040

1

1

0.3470

1

1

Table 13: Empirical powers of tests of H0 (1.5) against H1 (5.3), with λ̄ =

0.1, 0.5, 0.8, for the intercept model (1.3) when h is “bounded”. α = 5%.
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m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square 0.021 0.024 0.025 0.032

Edgeworth 0.030 0.031 0.042 0.046

transformation 0.027 0.031 0.035 0.046

bootstrap 0.041 0.068 0.056 0.055

Table 14: Empirical sizes of tests of H0 (1.5) against H1 (1.6) for regression

with SAR disturbances (1.1) when h is “divergent” and the disturbances are

generated as in (5.4). α = 5%.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square 0.023 0.032 0.034 0.047

Edgeworth 0.038 0.039 0.048 0.055

transformation 0.035 0.037 0.038 0.047

bootstrap 0.042 0.056 0.048 0.047

Table 15: Empirical sizes of tests of H0 (1.5) against H1 (1.6) for regression

with SAR disturbances (1.1) when h is “bounded” and the disturbances are

generated as in (5.4). α = 5%.

λ̄
m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square

0.1

0.5

0.8

0.044

0.615

0.974

0.067

0.787

0.999

0.072

0.888

1

0.096

0.947

1

Edgeworth

0.1

0.5

0.8

0.070

0.598

0.982

0.083

0.797

0.999

0.099

0.897

1

0.104

0.941

1

transformation

0.1

0.5

0.8

0.073

0.621

0.989

0.085

0.800

0.998

0.093

0.894

1

0.108

0.949

1

bootstrap

0.1

0.5

0.8

0.083

0.658

0.982

0.093

0.805

0.999

0.110

0.909

1

0.944

1

1

Table 16: Empirical powers of tests of H0 (1.5) against H1 (5.3), with λ̄ =

0.1, 0.5, 0.8, for regression with SAR disturbances (1.1) when h is “divergent”

and the disturbances are generated as in (5.4). α = 5%
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λ̄
m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square

0.1

0.5

0.8

0.088

0.796

1

0.136

0.986

1

0.177

1

1

0.360

1

1

Edgeworth

0.1

0.5

0.8

0.101

0.804

0.998

0.156

0.987

1

0.227

1

1

0.361

1

1

transformation

0.1

0.5

0.8

0.085

0.809

0.999

0.145

0.997

1

0.198

1

1

0.358

1

1

bootstrap

0.1

0.5

0.8

0.107

0.833

0.999

0.141

0.991

1

0.198

1

1

0.350

1

1

Table 17: Empirical powers of tests of H0 (1.5) against H1 (5.3), with λ̄ =

0.1, 0.5, 0.8, for regression with SAR disturbances (1.1) when h is “bounded”

and the disturbances are generated as in (5.4). α = 5%.
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